Who Are The Enemies? What Can They Do?

Internet Software Security Issues in the Software Development Process

Dr Charles P Pfleeger
Pfleeger Consulting Group
chuck@pfleeger.com
Overview
Overview

- Security Process
- Many Kinds of Threat Agents
- Countering Threats
- Software Process
- Improving Security in Software
What Developers Should Know about Security
What Developers Should Know about Security

- Security is not automatic
- People and situations are hostile
- Security can be tricky
- No magic technique or checklist leads to security
- **BUT** security *can* be compatible with good development processes
Security Considerations

- Goals
- Threats and Vulnerabilities
- Method + Opportunity + Motive
- Controls
What Security Is

- **Confidentiality**
 - information available for reading only when authorized

- **Integrity**
 - information available for modification only when authorized

- **Availability**
 - information available for use when authorized
Threat Sources
Threat Sources

- Natural
 - Fire, flood, hardware failure

- Human
 - Unintentional
 - Errors (accidental file deletion)
 - Omissions (missing data)
 - Intentional
 - Outsiders
 - Insiders
Method + Opportunity + Motive
Method + Opportunity + Motive

- **Method**
 - tools, techniques, knowledge

- **Opportunity**
 - access, ability
 - work factor: difficulty, time

- **Motive**
 - reason (if any)
Types of Harm
Types of Harm

☐ Confidentiality
 ■ Reveal private data

☐ Integrity
 ■ Damage or delete data

☐ Availability
 ■ Denial of access or service
Controls

- Physical
 - Guards, fences, sprinklers

- Administrative — Logical
 - Policies, laws

- Technical
 - Devices (login tokens)
 - Software (intrusion monitors)
 - Combinations (network monitoring)
Why Security is Hard (1)

- The defender must counter all threats; an attacker needs only one vulnerability
- Developers can introduce/allow flaws without knowing it
- Testing may not demonstrate security
- Harm can come from intentional or unintentional causes
Why Security is Hard (2)

- Is 1000 the same as 1,000?
- Is invisible text acceptable?
- Does efficiency—or inefficiency—matter?
- Does order matter?
Why Security is Hard (3)

- How can you demonstrate protection?
- How can you justify spending for security?
- Security is not just a set of features
Security Conclusions
Security Conclusions

- No one person—or group—alone can be responsible for security
- Solid security is not added at the end
- Security is hard
Security Design Concepts
Security Design Concepts

- *Common sense*
- Saltzer and Schroeder documented and published in 1975
- Others (Viega & McGraw, Howard & LeBlanc, NIST, OWASP, more) build on Saltzer and Schroeder
Saltzer and Schroeder

- Economy of mechanism
- Fail safe defaults
- Complete mediation
- Open design
- Separation of privilege
- Least privilege, permission-based
- Least common mechanism
- Ease of use
Viega and McGraw

- Secure the weakest link
- Keep it simple
- Promote privacy
- Remember that hiding secrets is hard
- Be reluctant to trust
- Use community resources
Howard and LeBlanc

- Minimize attack surface
- Assume external systems are insecure
- Security features are not the same as secure features
- Don’t mix code and data
- Plan for failure
- Learn from mistakes
- Backward compatibility is tricky
- Fix security issues correctly
Security Control Philosophy
Security Control Philosophy

- Secure perimeter
- Control of users and environment (devices, software)
- Defense in depth
- “Perfect” (secure) software
Web Characteristics
Web Characteristics

- Wide availability, to the masses
- Mandatory presence
- Very low cost of entry
- Very low skill to enter
- Low genetic diversity
- Very rapid technology turnover
- High demand for “oh, wow”
Software Development vs. the Web

- Orderly, managed process
- Well-defined system
- Well-defined requirements
- Integrated testing
- Continuous improvement
- Controllable => securable
- Unmanaged
- No perimeter; constant change
- Programs used-reused for any situation
- Testing varies
- Little feedback
- Uncontrolled => unsecured
Some Sources of Computer Incidents

- Errors
- Insiders
 - Nonmalicious and malicious
- Hackers
- Organizations
- Terrorists
Errors
Errors

- Humans are human
- Errors are unintentional
 - Pressure, distraction, confusion
- Random
Insiders
Insiders

- Insiders account for much harm
 - Many insiders, many actions
 - Much power
- Most insider harm is unintentional
- Intentional harm from anger, pay-off, values conflict
Hackers
Hackers

- Individuals, loose federations
- Motivation
 - Personal
- Objective
 - Experience, fame
- Impact
 - Modest
 - Sometimes accidental side effects
Hackers’ Motivations

- Self-gratification, addiction, espionage, theft, profit, vengeance, sabotage, freedom, 27%
- Challenge, knowledge, pleasure, 49%
- Recognition, excitement (illegal activity), friendship, 24%

Denning 1999, citing Chantler
Disturbing Hacker Trends

- ~0-day exploits
- Bagle, Netsky, Zafi worm writers join forces
- Enormous botnets for rent
- Conficker very sophisticated; evolving
Organized Crime

Organized bureaucracies (computer work is only one activity)

- Motivation
 - Financial
- Objective
 - Fraud, extortion
- Impact
 - e.g., identity theft, credit
Intelligence Services

- **Motivation**
 - Data: political, economic, military
 - needs of military during engagement
 - about potentially hostile nations
 - transnational threats (drugs, WMD)

- **Objective**
 - Mostly to learn
 - Sometimes to influence world
 - Occasionally to act
Terrorists
Terrorists

- Motivation
 - Ideological, political

- Objective
 - Intelligence gathering
 - Psychological
 - fear, panic, persuasion, misinformation
 - “Mass annoyance” to “mass disruption”
Cyber Warfare Activities

- Disruption
- Sabotage
- Denial of service
- Misinformation
- Deception
Uses of Computers in Terrorism

- Disseminate information
 - web pages, desktop publishing
- Communicate with each other
- Gather, hold, analyze information
 - data mining, web browsing
- Target computers (uncommon)
 - unauthorized access (read, write, delete)
 - denial of service
Why Cyber-Advertising (and Spam) Is Attractive

- Remote operation, anonymous
- Massive reach, low cost
- Agile, easy to change, tune
- Message tuned to audience (coupled with data mining)
- Novel campaign garners media attention
Why Cyber-Terrorism Is Also Attractive

- Remote operation, anonymous
- Massive reach, low cost
- Agile, easy to change, tune
- Message tuned to audience (coupled with data mining)
- Novel campaign garners media attention
The Medium Is the Message

- The Internet may be worth more as a communications medium than a target
- Individual nodes—or whole subdomains—can still be targets
Lessons (To Be) Learned

- Evidence of vulnerability is visible to others
- Attackers work together
- Talk (articles, blogs) may alert them to weaknesses
Recent Events

- 2008 attack on firewall of China
 - Apparently political
- 2006 top level domain server DOS attack
 - 2002 disabled 8/13 root name servers
 - Apparently a simple ICMP packet flood
- 2007 attack on Estonia web
 - Motive unknown; testing?
- 2003 power blackout in NE Canada, US
 - Apparently tree limbs, cascading errors
- 2000 attack on wastewater treatment control center
 - Apparently a disgruntled former employee
Interdependent Risk

- One company, two divisions, both at risk of catastrophic (company) failure
 - If Division 1 invests in risk-reduction, it remains at risk unless Division 2 does also
 - In fact, Division 1’s investment is wasteful if Division 2 does not invest

- What is incentive for an interdependent multi-corporation industry (power, finance, telecommunications) to invest in security?
Playing Security Analyst: A Smart Terrorist Would ...

- Plan, research, experiment
- Plant attacks today for use tomorrow
- Diversify the approach
- Implement multiple concurrent attacks
- Use different approaches to “come from all directions”
Software Process
Software Process Models

- MPS.BR
- CMMI
- ISO 9000
- Others
Common Aspects

- Establish an organizational policy
- Plan and define a process
- Monitor and control the process
- Evaluate adherence
- Collect improvement information
- Correct root causes of problems
- Ensure continuous improvement
Basic Process Areas
Basic Process Areas

- Requirements development
- Project planning
- Project monitoring and control
- Measurement and analysis
- Process and product quality assurance
- Configuration management
Measurement
Measurement

- What is important to measure
- How to measure it
- How precise the measurement must be
- How to interpret the measurement
- How to use measurement to improve
System Development Controls

- System development lifecycle
- Requirements determination
- Protection specifications development
- Design review
- System test review
- Certification and accreditation
- Service level agreement
Conclusions: What to Do?
What to Do: Process

- Requirements development
- Project planning
- Project monitoring and control
- Measurement and analysis
- Process and product quality assurance
- Configuration management

- Include security requirements
- Security overseer
- Threat–control analysis
- Security control coverage
- Security testing at all stages
- Security review prior to stage release
What to Do: Design

- Include security from the start
- Make security trade-off decisions visible and based on balance of competing factors
- Ensure a security expert is integral part of design team
- Ensure that project team members are all sensitive to security
What to Do: Measurement

- What is important to measure
- How to measure it
- How precise the measurement must be
- How to interpret the measurement