Software Quality in a Business Context

Shari Lawrence Pfleeger
WAMPS
October 2009
Overview

- Why measuring software quality is hard: the role of the business context.

- Three examples
 - Testing geographic profiling software
 - Usability of US-VISIT fingerprints
 - Measuring security

- Lessons learned
Perspective is All

- The business goals are not usually the same as the technology goals.
- Quality depends on many things, some of which have more to do with business goals than technology goals.
- The result can be a disconnect between what is wanted and what is delivered …
How the customer explained it
How the customer explained it

How the Project Leader understood it

How the Analyst designed it
How the customer explained it
How the Project Leader understood it
How the Analyst designed it
How the Programmer wrote it
How the Business Consultant described it
How the customer explained it
How the Project Leader understood it
How the Analyst designed it
How the Programmer wrote it
How the Business Consultant described it
How the project was documented
What operations installed
How the customer was billed
How it was supported
Four Key Perspectives on Quality

The Organization
(culture, expressed policy)

The Environment
(laws, economics, ethics)

The System
(embedded policy, correctness)

The Individuals
(culture, perceived policy and intent)
Process is Important But Not Everything

Today we'll discuss ways to improve our workflow process.

As you know, a good process is a substitute for good employees.

The ultimate goal is to simplify our processes so much...

That we can train chickens to do your jobs in return for pellets.

We'll begin by discussing our process for funding new projects.

Could any part of our process be replaced by, for example, ringing a bell with your beak?

Yes, but only the part that you do.

There's a wrinkle in the plan.

Pellet
So How Do We Put the Pieces Together?
We Can Study Several Examples

Example 1: Geographic profiling software

- What does it do?
- How usable is it?
- How can we test it?
- How does it fit in its context: law enforcement?
What is Geographic Profiling Software?

- Based on assumptions about “spatial structure” of crime patterns
- Inputs: Discrete events tied to geographic locations
- Outputs: Value maps that show most probable locations of centers of activity
- Dependencies: Type of crime, criminal, geographic area
- Example: Dark red represents 70% confidence level
Example: Rigel
Create New Cases

- Input details for each case
 - Investigator
 - Case number
 - Crime type
 - City
 - Time zone
 - Date
 - Geography
Enter Crime Site and Suspect Locations
Create Crime Scenarios

- Includes weights for characteristics
- Allows importing and exporting of crime data from other databases
Rank Suspects

The image shows a software interface titled "ControlPanel," which appears to be used for ranking suspects. The interface includes tabs for "Crimes," "Suspects," "Sites," and "TimeAnalysis." The current suspect details are displayed, including:

- **Name:** Mo Gunz
- **Address:** 1503 Kingsway
- **City:** Vancouver
- **Prov.:** BC
- **DOB:**
- **Location:** Work
- **Postal:**
- **Country:**
- **Valid From:**
- **Valid To:**
- **Comments:**

Suspect Statistics:
- **Z Score:** 16.643
- **Hit Score:** 0.755%
- **Hit Area:** 0.667 sq. kms.

Crime Trip Distances:
- **Min:** 0.139 kms
- **Mean:** 3.972 kms
- **Max:** 8.578 kms
- **Std Dev.:** 2.372 kms

A table is also shown with suspect records:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Location</th>
<th>Z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mo Gunz</td>
<td>Work</td>
<td>16.643</td>
</tr>
<tr>
<td>2</td>
<td>F Ventresca</td>
<td>Home</td>
<td>8.261</td>
</tr>
<tr>
<td>3</td>
<td>John Smith</td>
<td>Home</td>
<td>7.73</td>
</tr>
<tr>
<td>4</td>
<td>Francis Smith</td>
<td>Home</td>
<td>4.045</td>
</tr>
</tbody>
</table>

The interface includes options for modifying, deleting, adding, importing, and exporting suspects.
Produce Statistical Reports

General Case Statistics
- **Case Title:** Insurance Agency Robberies
- **Case Number:** G95-007
- **Scenario:** 29 crimes
 - Number of crimes: 29
 - Number of sites: 29
 - Hunting area: 86.45 sq. kms
 - Area/Crime site: 2.98 sq. kms
 - Expected Hit Score Stats
 - Hit Score: 1.13%
 - Area: 0.97 sq. kms
 - Std Dev: 1.45%
 - Std Dev Area: 1.25 sq. kms

Advanced Statistics
- **Hunting Area Width:** 10.464 kms
- **Height:** 8.261 kms
- **Standard Distance:** 3.268 kms
- **Buffer Zone Radius:** 0.542 kms
 - R: 1.043
 - SEre: 0.084 kms
 - Zr: 0.446
- **Mean Nearest-Neighbour Dist:** 1.083 kms
- **Mean Inter-Neighbour Dist:** 5.39 kms
- **Mean Furthest-Neighbour Dist:** 10.901 kms
- **Raw Z-Score Statistics**
 - Maximum: 204.334
 - Minimum: 36.47
 - Mean: 98.676
 - Mode: 82.5
 - Std Dev: 33.754
Questions to Ask

- How do you evaluate geographic profiling software?
- How can you assess the underlying algorithms?
- For law enforcement users, what are the best interfaces?
- How do we deal with the dearth of serial crime data?
- What about automated testing tools?
Bottom Line:
Is It Better Than Pins On a Map?
We Can Study Several Examples

Example 2: US-VISIT software

- What does it do?
- How reliable are fingerprints as an identity mechanism?
- How usable is it?
- How can we test it?
- How does it fit in its context: identity confirmation?
Entry-exit program for the United States

Goals

– Enhance security of citizens and visitors
– Facilitate legitimate travel and trade
– Ensure the integrity of the immigration system
– Protect privacy of visitors
What Does It Do?

- US-VISIT requires two things upon entry to US:
 - Ten-digit fingerprints
 - Photo
- Software compares with Watch List
Significant Quality Issues

- Is 10-print better than 2-print?
 - Combining measures of single print quality
- False positives and false negatives
- Table height affects quality: usability issue
- Correctness of software (including conformance to policy)
- How do you test this software?
We Can Study Several Examples

Example 3: Measuring security
- What do we measure?
- How credible is it?
- How can we use it?
- How does it fit in its context: making decisions about investment in security processes and technology?
The Wrong Way to Measure Security

MY BOSS IS SO DUMB, HE BROUGHT A TAPE MEASURE TO A DISTANCE LEARNING CLASS.

HA HA HA HA!

MY BOSS IS SO DUMB...

HE PUTS POSTAGE STAMPS ON HIS E-MAIL.

NOW HE CAN'T SEE HIS PC SCREEN.

HA HA HA HA

HOW ABOUT YOU, DILBERT? DO YOU HAVE ANY DUMB BOSS JOKES?

DILBERT, MY PC IS WARM. I THINK OUR FIRE WALL IS ACTING UP.

WE'RE SORRY.

WE DIDN'T KNOW.

Copyright © 1999 United Feature Syndicate, Inc.
Redistribution in whole or in part prohibited.
Is Security Like Reliability?

Failures (in order of occurrence from left to right)
Nine Reasons Why Security Measurement is Difficult

- Not all security requirements can be tested.
- Environment, abstraction and context affect it.
- Measurement and security interact.
- Few systems stand alone.
- Security is emergent and not reducible.
- The adversary changes the environment.
- Measurement is both an expectation and an organizational objective.
- We suffer from over-optimism.
- We perceive gain differently from loss.
Not All Security Requirements Can Be Tested

Charles Pfleeger: “The system will do this … and nothing more.”

General statements about security lead to the halting problem.

Approximations build confidence but not assurance.

We must characterize the deployed environment and assess how well assumptions, context, threat models match operational use.

At best: Control the factors we anticipate.
Systems are evolutionary, built to incorporate change.

Lehman: P-, S-, E-systems.

Measuring aspects of a system’s security is inherently difficult, because the system itself is inconstant.
Lehman: E-Systems

Diagram:
- Problem
 - Abstraction
 - Requirements Specification
 - System
 - Information

Real World

Comparison

Subject to change
Measurement and Security
Interact

- The more detail we have about security, the more we use it to address what we think are the vulnerabilities.
- Perceived improvements in security may lead to riskier behavior à la Edward Tenner: *Why Things Bite Back*.
Few Systems Stand Alone

- System security is dependent upon partner’s security.
- Trust is expressed
 - Explicitly, using mechanisms such as ACLs at network service level
 - Implicitly, for more fine-grained things
 - Computation
 - Memory use, etc.
 - As (implicit) trust in people and systems goes up, need for explicit trust goes down
Security is Emergent, Not Reducible

Security metrics are needed across layers or models.

- Entire system
- Communication channel
- Host, including application, library, and operating system software
Security is Emergent, Not Reducible

Security problems visible at higher layers may not be visible at lower ones.

- For PCS network that controls production and distribution:
 - Confidentiality matters far less than the control’s availability and integrity
- For billing:
 - Integrity matters more

Single security metrics that describe overall confidentiality, integrity and availability may not be as useful as measures that keep these items separate.
The Adversary Changes the Environment
The Adversary Changes the Environment

Environment is...
- What you’re trying to do (perspective)
- How the system is used (operational profile)
- What you’re connected to (environment)
- What the adversary tries to do (more environment)

This matters because the adversary invents new attack strategies that change the environment.
Measurement is an Expectation and an Organizational Objective

- Security is never absolute.
- Measurement represents an expectation of security and must be represented stochastically, with a distribution that reflects the changes wrought by the E-system and its environment, including the changing threat model.
We Suffer From Over-optimism

Behavior and economic theory suggests that the longer we go without being attacked, the less likely we think an attack is.
We Perceive Gain Differently From Loss

Behavior theory again.
Conclusions

- Measuring quality in theory is not so easy in practice.
 - Concepts depend on perspective
 - Perspectives hard to put together
 - Good data not available
 - Volume of data insufficient
 - Varying confidence in data quality
 - Not to mention input errors …
 - Algorithms are questionable
 - Resources are limited
 - Underlying aspects keep changing
 - Laws, rules, players, software change
 - Evaluation constrained by time available

- Expectations must be tempered by reality
So What Do We Do?
What to Do: Part 1

- Go outside traditional computer science to understand other perspectives. For example:
 - Behavior theory
 - Economics
 - Risk perception and communication

- Focus on observation to support model-building.

- Quality is a set of attributes, so use a set of metrics.
Use different strokes for different folks.
- View at ground level vs. view from 10,000 meters.

Create a theory of relativity.
- Prediction requires a model as well as metrics.

Embrace uncertainty.
- Build models that incorporate and exploit it.
- Goal is to improve understanding, then narrow distributions.
Perguntas?